f08 — Least-squares and Eigenvalue Problems (LAPACK) f08fuc

NAG C Library Function Document

nag_ zunmtr (f08fuc)

1 Purpose

nag_zunmtr (f08fuc) multiplies an arbitrary complex matrix C' by the complex unitary matrix () which was
determined by nag_zhetrd (f08fsc) when reducing a complex Hermitian matrix to tridiagonal form.

2 Specification

void nag_zunmtr (Nag_OrderType order, Nag_SideType side, Nag_UploType uplo,
Nag_TransType trans, Integer m, Integer n, const Complex a[], Integer pda,
const Complex tau[], Complex c[], Integer pdc, NagError *fail)

3 Description

nag_zunmtr (f08fuc) is intended to be used after a call to nag_zhetrd (f08fsc), which reduces a complex
Hermitian matrix A to real symmetric tridiagonal form 7 by a unitary similarity transformation:

A =QTQ". nag zhetrd (f08fsc) represents the unitary matrix @ as a product of elementary reflectors.
This function may be used to form one of the matrix products

QC, Q"C, cQ or CQ",
overwriting the result on C' (which may be any complex rectangular matrix).

A common application of this function is to transform a matrix Z of eigenvectors of 7" to the matrix Q7 of
eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: side — Nag_SideType Input
On entry: indicates how Q or Q is to be applied to C' as follows:
if side = Nag_LeftSide, Q or Q" is applied to C' from the left;
if side = Nag_RightSide, Q or Q' is applied to C' from the right.
Constraint. side = Nag_LeftSide or Nag_RightSide.
3: uplo — Nag UploType Input
On entry: this must be the same parameter uplo as supplied to nag zhetrd (f08fsc).
Constraint: uplo = Nag_Upper or Nag_Lower.

[NP3645/7] f08fuc.1

f08fuc NAG C Library Manual

4: trans — Nag TransType Input

On entry: indicates whether Q or Q" is to be applied to C as follows:
if trans = Nag NoTrans, () is applied to C;

if trans = Nag_ConjTrans, Q" is applied to C.

Constraint. trans = Nag NoTrans or Nag ConjTrans.

5: m — Integer Input
On entry: m, the number of rows of the matrix C; m is also the order of @) if side = Nag_LeftSide.

Constraint: m > 0.

6: n — Integer Input

On entry: n, the number of columns of the matrix C; n is also the order of @ if
side = Nag_RightSide.

Constraint: n > 0.

7: a[dim] — Complex Input/Output

Note: the dimension, dim, of the array a must be at least
max(1,pda x m) when side = Nag_LeftSide;
max(1,pda x n) when side = Nag_RightSide.

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + 4 — 1] and
if order = Nag_RowMajor, the (i,7)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag_zhetrd
(f08fsc).

On exit: used as internal workspace prior to being restored and hence is unchanged.

8: pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraints:
if side = Nag_LeftSide, pda > max(1, m);
if side = Nag_RightSide, pda > max(1,n).
9: tau[dim| — const Complex Input

Note: the dimension, dim, of the array tau must be at least max(l,m— 1) when
side = Nag_LeftSide and at least max(1,n — 1) when side = Nag_RightSide.

On entry: further details of the elementary reflectors, as returned by nag zhetrd (f08fsc).

10: ¢[dim] — Complex Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(1l,pdc x n) when
order = Nag_ColMajor and at least max(1, pdec x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix C is stored in ¢[(j — 1) X pde + i — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix C' is stored in ¢[(i — 1) x pde + j — 1].

On entry: the m by n matrix C.
On exit: ¢ is overwritten by QC or QC or CQ or CQ as specified by side and trans.

108fuc.2 [NP3645/7]

f08 — Least-squares and FEigenvalue Problems (LAPACK) f08fuc

11: pdc — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.
Constraints:

if order = Nag_ColMajor, pdc > max(1, m);
if order = Nag RowMajor, pdc > max(1,n).
12: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pde = (value).
Constraint: pde > 0.

NE_INT 2

On entry, pde = (value), m = (value).
Constraint: pde > max(1, m).

On entry, pde = (value), n = (value).
Constraint: pde > max(1,n).

NE_ENUM_INT 3

On entry, side = (value), m = (value), n = (value), pda = (value).
Constraint: if side = Nag_LeftSide, pda > max(1, m);
if side = Nag_RightSide, pda > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix E such that
1El, = O Cll,,

where € is the machine precision.

[NP3645/7] 108fuc.3

f08fuc NAG C Library Manual

8 Further Comments

The total number of real floating-point operations is approximately 8m’n if side = Nag_LeftSide and
8mn? if side = Nag_RightSide.

The real analogue of this function is nag_dormtr (f08fgc).

9 Example

To compute the two smallest eigenvalues, and the associated eigenvectors, of the matrix A, where

—2.28 +0.00¢ 1.78 —2.03¢ 226 +0.10¢ —0.12 +2.53¢
1.78 +2.03¢ —1.12 + 0.00¢ 0.01 +-0.43: —1.07 4 0.86¢
2.26 —0.10¢ 0.01 —0.43¢ —-0.37+0.00c 231 —-0.92¢

—0.12 -2.537 —1.07 — 0.86: 2.3140.92¢ —0.73 +0.00¢

A:

Here A is Hermitian and must first be reduced to tridiagonal form T by nag_zhetrd (f08fsc). The program
then calls nag_dstebz (f08jjc) to compute the requested eigenvalues and nag_zstein (f08jxc) to compute the
associated eigenvectors of 7. Finally nag zunmtr (f08fuc) is called to transform the eigenvectors to those
of A.

9.1 Program Text

/* nag_zunmtr (£08fuc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, m, n, nsplit, pda, pdz, d_len, e_len, tau_len;
Integer exit_status=0;
double v1=0.0, vu=0.0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char([2];
Integer *iblock=0, *ifailv=0, #*isplit=0;
Complex *a=0, *tau=0, *z=0;
double *d=0, *e=0, *w=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)#*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("£f08fuc Example Program Results\n\n");

/* Skip heading in data file #*/
Vscanf ("s*x["\n] ");

Vscanf ("$1d%s*[*\n] ", &n);

pda n;

pdz n;

108fuuc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

tau_len = n-1;
d_len = n;
e_len = n-1;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)
(d = NAG_ALLOC(d_len, double))
(e = NAG_ALLOC(e_len, double))
(iblock = NAG_ALLOC(n, Integer
(ifailv = NAG_ALLOC(n, Integer
(isplit = NAG_ALLOC(n, Integer
(w = NAG_ALLOC(n, double)) ||
(tau = NAG_ALLOC(n-1, Complex)
(z = NAG_ALLOC(n * n, Complex)

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read A from data file =*/
Vscanf (" ' %1s ’'%*["\n] ", uplo_char

)
|
|
)) 1
)) 1
)) 1

) 1
))

)i

A(i,j).re, &A(1i,3)

A(i,j).re, &A(1i,7)

if (*(unsigned char *)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char #*)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for
exit_status = -1;
goto END;
}
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &
}
Vscanf ("$*["\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1; j <= 1i; ++3)
Vscanf (" (%1f , %1f)", &
}
Vscanf ("sx[“\n] ");
¥

/* Reduce A to tridiagonal form T =
fO08fsc(order, uplo, n, a, pda, 4, e,

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£08fsc.\n%s\n",
exit_status = 1;
goto END;

}

/* Calculate the two smallest eigenvalues of T
f08jjc(Nag_Indices, Nag ByBlock, n, vl, vu, 1, 2, 0.0,

d, e, &m, &nsplit, w, iblock,

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£08jjc.\n%s\n",
exit_status = 1;
goto END;

}

/* Print eigenvalues */
Vprintf ("Eigenvalues\n") ;

[NP3645/7]

(Q**H)*A*Q */
tau, &fail);

isplit, &fail);

fail.message) ;

fail.message) ;

Nag_UploType type\n");

.im) ;

.im) ;

(same as A)

f08fuc

f08fuc.5

f08fuc

for (i = 0; i < m; ++1)

Vprintf ("%8.4f%s", wl[i], (i+1)%8==0 ?"\n":"
Vprintf ("\n\n") ;
/* Calculate the eigenvectors of T storing the result in Z */
f08jxc(order, n, d, e, m, w, iblock, isplit, =z, pdz, ifailv,

if

{

s&fail);
(fail.code != NE_NOERROR)
Vprintf ("Error from f08jxc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

NAG C Library Manual

")

/* Calculate all the eigenvectors of A = Qx(eigenvectors of T) =*/
fO08fuc(order, Nag LeftSide, uplo, Nag NoTrans, n, m, a, pda,

if

/*

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m,

tau, z, pdz, &fail);
(fail.code != NE_NOERROR)

{

Vprintf ("Error from f08fuc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Print eigenvectors */

z, pdz, Nag_BracketForm, "%7.4f", "Eigenvectors",

Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,
0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (a) NAG_FREE(a);
if (d) NAG_FREE(Q);
if (e) NAG_FREE (e);
if (iblock) NAG_FREE (iblock);
if (ifailv) NAG_FREE (ifailv);
if (isplit) NAG_FREE(isplit);
if (tau) NAG_FREE(tau);

if
if

(w) NAG_FREE (w) ;
(z) NAG_FREE (z);

return exit_status;

9.2

Program Data

f08fuc Example Program Data

4

"L
(-2
(1
(2
(-0

9.3

.28, 0.00)

.78, 2.03) (-1.12, 0.00)

.26,-0.10) (0.01,-0.43) (-0.37, 0.00)

.12,-2.53) (-1.07,-0.86) (2.31, 0.92) (-0.73, 0.00)
Program Results

f08fuc Example Program Results

Eigenvalues
-6.0002 -3.0030

Eigenvectors

S w N

4165,-0.1417
1743, 0.4162

2965,-0.1507

1
7299, 0.0000)
)
)
) 3482, 0.4085

2
(0. (-0.2595, 0.0000)
(-0.1663,-0.2061 (0.5969, 0.4214)
(-0. (-0.)
(0. (0.)

0,

:Value of N
:Value of UPLO

:End of matrix A

J08fuc.6 (last)

[NP3645/7]

	f08fuc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	uplo
	trans
	m
	n
	a
	pda
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

